The invention of the telephone was the culmination of work done by more than one individual, and led to an array of lawsuits relating to the patent claims of several individuals and numerous companies. Notable people included in this were Antonio Meucci, Philipp Reis, Elisha Gray and Alexander Graham Bell.
Erster elektromagnetischer Telegraph der Welt über den Dächern von Göttingen (First electromagnetic telegraph in the world over the roofs of Göttingen), Georg-August-Universität Göttingen website. Retrieved January 22, 2013.
Charles Bourseul was a French telegraph engineer who proposed (but did not build) the first design of a "make-and-break" telephone in 1854. That is about the same time that Meucci later claimed to have created his first attempt at the telephone in Italy.
Bourseul explained: "Suppose that a man speaks near a movable disc sufficiently flexible to lose none of the vibrations of the voice; that this disc alternately makes and breaks the currents from a battery: you may have at a distance another disc which will simultaneously execute the same vibrations.... It is certain that, in a more or less distant future, a speech will be transmitted by electricity. I have made experiments in this direction; they are delicate and demand time and patience, but the approximations obtained promise a favorable result".
The first American demonstration of Meucci's invention took place in Staten Island, New York in 1854. In 1861, a description of it was reportedly published in an Italian-language New York newspaper, although no known copy of that newspaper issue or article has survived to the present day. Meucci claimed to have invented a paired electromagnetic transmitter and receiver, where the motion of a diaphragm modulated a signal in a coil by moving an electromagnet, although this was not mentioned in his 1871 U.S. patent caveat. A further discrepancy observed was that the device described in the 1871 caveat employed only a single conduction wire, with the telephone's transmitter-receivers being insulated from a 'ground return' path.
Meucci studied the principles of electromagnetic voice transmission for many years and was able to realise his dream of transmitting his voice through wires in 1856. He installed a telephone-like device within his house in order to communicate with his wife who was ill at the time. Some of Meucci's notes purportedly written in 1857 describe the basic principle of electromagnetic voice or in other words, the telephone.
In the 1880s Meucci was credited with the early invention of inductive loading of telephone wires to increase long-distance signals. Serious burns from an accident, a lack of English, and poor business abilities resulted in Meucci's failing to develop his inventions commercially in America. Meucci demonstrated some sort of instrument in 1849 in Havana, Cuba, however, this may have been a variant of a string telephone that used wire. Meucci has been further credited with the invention of an anti-sidetone circuit. However, examination showed that his solution to sidetone was to maintain two separate telephone circuits and thus use twice as many transmission wires. The anti-sidetone circuit later introduced by Bell Telephone instead canceled sidetone through a feedback process.
An American District Telegraph (ADT) laboratory reportedly lost some of Meucci's working models, his wife reportedly disposed of others and Meucci, who sometimes lived on public assistance, chose not to renew his 1871 teletrofono patent caveat after 1874.
A resolution was passed by the United States House of Representatives in 2002 that said Meucci did pioneering work on the development of the telephone.Wheen, Andrew. Dot-Dash to Dot.com: How Modern Telecommunications Evolved from the Telegraph to the Internet. Springer, 2010. p. 45. Web. 23 Sep. 2011.Cleveland, Cutler (Lead Author); Saundry, Peter (Topic Editor). Meucci, Antonio. Encyclopedia of Earth, 2006. Web. 22 Jul. 2012. Caretto, Ennio. Gli Usa ammettono: Meucci è l' inventore del telefono. Corriere della Sera. Web. 21 Jul. 2012. The resolution said that "if Meucci had been able to pay the $10 fee to maintain the caveat after 1874, no patent could have been issued to Bell".
The Meucci resolution by the US Congress was promptly followed by a Canada legislative motion by Canada's 37th Parliament, declaring Alexander Graham Bell as the inventor of the telephone. Others in Canada disagreed with the Congressional resolution, some of whom provided criticisms of both its accuracy and intent.
They claim that Meucci was the actual inventor of the telephone, and base their argument on reconstructed evidence. What follows, if not otherwise stated, is a summary of their historic reconstruction. Basilio Catania's reconstruction, in English
The above information was published in the Scientific American Supplement No. 520 of December 19, 1885, Scientific American Supplement No. 520, December 19, 1885 based on reconstructions produced in 1885, for which there was no contemporary pre-1875 evidence. Meucci's 1871 caveat did not mention any of the telephone features later credited to him by his lawyer, and which were published in that Scientific American Supplement, a major reason for the loss of the 'Bell v. Globe and Meucci' patent infringement court case, which was decided against Globe and Meucci. Meucci's 1871 patent caveat, pages 16-18
In 1874, the Reis device was tested by the British company Standard Telephones and Cables (STC). The results also confirmed it could transmit and receive speech with good quality (fidelity), but relatively low intensity.
Reis' new invention was articulated in a lecture before the Physical Society of Frankfurt on 26 October 1861, and a description, written by himself for Jahresbericht a month or two later. It created a good deal of scientific excitement in Germany; models of it were sent abroad, to London, Dublin, Tiflis, and other places. It became a subject for popular lectures, and an article for scientific cabinets.
Thomas Edison tested the Reis equipment and found that "single words, uttered as in reading, speaking and the like, were perceptible indistinctly, notwithstanding here also the inflections of the voice, the modulations of interrogation, wonder, command, etc., attained distinct expression."Coe, page 23 He used Reis's work for the successful development of the carbon microphone. Edison acknowledged his debt to Reis thus:
The first inventor of a telephone was Phillip Reis of Germany only musical not articulating. The first person to publicly exhibit a telephone for transmission of articulate speech was A. G. Bell. The first practical commercial telephone for transmission of articulate speech was invented by myself. Telephones used throughout the world are mine and Bell's. Mine is used for transmitting. Bell's is used for receiving.Edison, Thomas A. The Edison Papers, Digital Edition Rutgers University, accessed 26 March 2006. LB020312 TAEM 83:170
On February 14, 1876, at the US Patent Office, Gray's lawyer filed a patent caveat for a telephone on the very same day that Bell's lawyer filed Bell's patent application for a telephone. The water microphone described in Gray's caveat was strikingly similar to the experimental telephone transmitter tested by Bell on March 10, 1876, a fact which raised questions about whether Bell (who knew of Gray) was inspired by Gray's design or vice versa. Although Bell did not use Gray's water transmitter in later telephones, evidence suggests that Bell's lawyers may have obtained an unfair advantage over Gray.Inventors Digest, July/August 1998, pp. 26–28
As Professor of Vocal Physiology at Boston University, Bell was engaged in training teachers in the art of instructing the deaf how to speak and experimented with the Leon Scott phonautograph in recording the vibrations of speech. This apparatus consists essentially of a thin membrane vibrated by the voice and carrying a light-weight stylus, which traces an undulatory line on a plate of smoked glass. The line is a graphic representation of the vibrations of the membrane and the waves of sound in the air.Robert Bruce (1990), pp. 102–103, 110–113, 120–121
This background prepared Bell for work with spoken sound waves and electricity. He began his experiments in 1873–1874 with a harmonic telegraph, following the examples of Bourseul, Reis, and Gray. Bell's designs employed various on-off-on-off make-break current-interrupters driven by vibrating steel reeds which sent interrupted current to a distant receiver electro-magnet that caused a second steel reed or tuning fork to vibrate.Robert Bruce (1990), pp. 104–109
During a June 2, 1875, experiment by Bell and his assistant Thomas Watson, a receiver reed failed to respond to the intermittent current supplied by an electric battery. Bell told Watson, who was at the other end of the line, to pluck the reed, thinking it had stuck to the pole of the magnet. Watson complied, and to his astonishment Bell heard a reed at his end of the line vibrate and emit the same timbre of a plucked reed, although there were no interrupted on-off-on-off currents from a transmitter to make it vibrate.Robert Bruce (1990), pp. 146–148 A few more experiments soon showed that his receiver reed had been set in vibration by the magneto-electric currents induced in the line by the motion of the distant receiver reed in the neighborhood of its magnet. The battery current was not causing the vibration but was needed only to supply the magnetic field in which the reeds vibrated. Moreover, when Bell heard the rich overtones of the plucked reed, it occurred to him that since the circuit was never broken, all the complex vibrations of speech might be converted into undulating (modulated) currents, which in turn would reproduce the complex timbre, amplitude, and frequencies of speech at a distance.
After Bell and Watson discovered on June 2, 1875, that movements of the reed alone in a magnetic field could reproduce the frequencies and timbre of spoken sound waves, Bell reasoned by analogy with the mechanical phonautograph that a skin diaphragm would reproduce sounds like the human ear when connected to a steel or iron reed or hinged armature. On July 1, 1875, he instructed Watson to build a receiver consisting of a stretched diaphragm or drum of goldbeater's skin with an armature of magnetized iron attached to its middle, and free to vibrate in front of the pole of an electromagnet in circuit with the line. A second membrane-device was built for use as a transmitter.Robert Bruce (1990), p. 149 This was the "gallows" phone. A few days later they were tried together, one at each end of the line, which ran from a room in the inventor's house, located at 5 Exeter Place in Boston, to the cellar underneath. Bell, in the work room, held one instrument in his hands, while Watson in the cellar listened at the other. Bell spoke into his instrument, "Do you understand what I say?" and Watson answered "Yes". However, the voice sounds were not distinct and the armature tended to stick to the electromagnet pole and tear the membrane.
On 10 March 1876, in a test, between two rooms in a single building, above Palace Theatre, at 109 Court Street, Birth place of telephone, 109 Court St., Boston, On the top floor of this building in 1875, Professor Bell carried on his experiments and first succeeded in transmitting speech by electricity. – Detroit Publishing Co. no. K 2597. www.loc.gov not far from Scollay Square in Boston The History of the Telephone :: University of Virginia Library showed that the telephone worked, but so far, only at a short range.American Treasures of the Library of Congress ... Bell – Lab notebook
In 1876, Bell became the first to obtain a patent for an "apparatus for transmitting vocal or other sounds telegraphically", after experimenting with many primitive sound transmitters and receivers. Because of illness and other commitments, Bell made little or no telephone improvements or experiments for eight months until after his U.S. patent 174,465 was published., but within a year the first telephone exchange was built in Connecticut and the Bell Telephone Company was created in 1877, with Bell the owner of a third of the shares, quickly making him a wealthy man. Organ builder Ernest Skinner reported in his autobiography that Bell offered Boston-area organ builder Hutchings a 50% interest in the company but Hutchings declined.
In 1880, Bell was awarded the French Volta Prize for his invention and with the money, founded the Volta Laboratory in Washington, where he continued experiments in communication, in medical research, and in techniques for teaching speech to the deaf, working with Helen Keller among others. In 1885 he acquired land in Nova Scotia and established a summer home there where he continued experiments, particularly in the field of aviation.
Bell himself said that the telephone was invented in Canada but made in the United States.
Bell's telephone transmitter (microphone) consisted of a double electromagnet, in front of which a membrane, stretched on a ring, carried an oblong piece of soft iron cemented to its middle. A funnel-shaped mouthpiece directed the voice sounds upon the membrane, and as it vibrated, the soft iron "armature" induced corresponding currents in the coils of the electromagnet. These currents, after traversing the wire, passed through the receiver which consisted of an electromagnet in a tubular metal can having one end partially closed by a thin circular disc of soft iron. When the undulatory current passed through the coil of this electromagnet, the disc vibrated, thereby creating sound waves in the air.
This primitive telephone was rapidly improved. The double electromagnet was replaced by a single permanently magnetized magnet having a small coil or bobbin of fine wire surrounding one pole, in front of which a thin disc of iron was fixed in a circular mouthpiece. The disc served as a combined diaphragm and armature. On speaking into the mouthpiece, the iron diaphragm vibrated with the voice in the magnetic field of the bar-magnet pole, and thereby caused undulatory currents in the coil. These currents, after traveling through the wire to the distant receiver, were received in an identical apparatus. This design was patented by Bell on January 30, 1877. The sounds were weak and could only be heard when the ear was close to the earphone/mouthpiece, but they were distinct.
In the third of his tests in Southern Ontario, on August 10, 1876, Bell made a call via the telegraph line from the family homestead in Brantford, Ontario, to his assistant located in Paris, Ontario, some 13 kilometers away. This test was claimed by many sources as the world's first long-distance call. The final test certainly proved that the telephone could work over long distances.
On March 10, 1876, Bell had used "the instrument" in Boston to call Thomas Watson who was in another room but out of earshot. He said, "Mr. Watson, come here – I want to see you" and Watson soon appeared at his side.
In the first test call at a longer distance in Southern Ontario, on August 3, 1876, Alexander Graham's uncle, Professor David Charles Bell, spoke to him from the Brantford telegraph office, reciting lines from Shakespeare's Hamlet (" To be or not to be....")."You Can Tour The House in Brantford Where Bell Worked on His Telephone", Toronto Star, December 26, 1970. The young inventor, positioned at the A. Wallis Ellis store in the neighboring community of Mount Pleasant,MacLeod, Elizabeth. Alexander Graham Bell: An Inventive Life, Toronto, Ontario, Canada: Kids Can Press, 1999, , p. 14. received and may possibly have transferred his uncle's voice onto a phonautograph, a drawing made on a pen-like recording device that could produce the shapes of sound as onto smoked glass or other media by tracing their vibrations.
The next day on August 4 another call was made between Brantford's telegraph office and Melville House, where a large dinner party exchanged "....speech, recitations, songs and instrumental music". To bring telephone signals to Melville House, Alexander Graham audaciously "bought up" and "cleaned up" the complete supply of stovepipe wire in Brantford."Bell Emphatic in Declaring That Telephone Was Invented Here", Brantford Expositor, August 10, 1936, p. 15."Use of Stove Pipe Wire Is Related at Banquet: Graham Tells Of Some Early Experiments", Brantford Expositor, August 10, 1936, p. 17. With the help of two of his parents' neighbours,Patten, William; Bell, Alexander Melville. Pioneering The Telephone In Canada, Montreal: Herald Press, 1926. N.B.: Patten's full name was William Patten, not Gulielmus Patten as credited elsewhere. he tacked the stovepipe wire some 400 metres (a quarter mile) along the top of fence posts from his parents' home to a junction point on the telegraph line to the neighbouring community of Mount Pleasant, which joined it to the Dominion Telegraph office in Brantford, Ontario.Patten & Bell, 1926, pp. 15–16, 19."The Bell Homestead", Montreal, Canada: Telephone Historical Collection, Bell Canada, December 29, 1954, pp. 1–2.
The third and most important test was the world's first true long-distance telephone call, placed between Brantford and Paris, Ontario on August 10, 1876.Harrington, Stephanie. "Bell Homestead: Home Offers In-depth Look At Inventor", Brantford and Brant County Community Guide, 2002–2003", Brantford Expositor, 2002.Korfmann, Margret. "Homestead's History Highlighted", Brantford Expositor, February 22, 1985. For that long-distance call Alexander Graham Bell set up a telephone using telegraph lines at Robert White's Boot and Shoe Store at 90 Grand River Street North in Paris via its Dominion Telegraph Co. office on Colborne Street. The normal telegraph line between Paris and Brantford was not quite 13 km (8 miles) long, but the connection was extended a further 93 km (58 miles) to Toronto to allow the use of a battery in its telegraphy."First Telephone Office", CWB, November 17, 1971, pp. 4–5."A .G. Bell's Brantford House Is Museum of the Telephone", Toronto Star, April 25, 1987, p. H-23. Granted, this was a one-way long-distance call. The first two-way (reciprocal) conversation over a line occurred between Cambridge and Boston (roughly 2.5 miles) on October 9, 1876. During that conversation, Bell was on Kilby Street in Boston and Watson was at the offices of the Walworth Manufacturing Company. First Phone Call 685 Main Street
Scientific American described the three test calls in their September 9, 1876, article, "The Human Voice Transmitted by Telegraph". Historian Thomas Costain referred to the calls as "the three great tests of the telephone"."First Long Distance Telephone Call Recalled", Brantford Expositor, August 11, 1976. One Bell Homestead reviewer wrote of them, "No one involved in these early calls could possibly have understood the future impact of these communication firsts".
Going to the small telephone box with its slender wire attachments, Mr. Bell coolly asked, as though addressing someone in an adjoining room, "Mr. Watson, are you ready!" Mr. Watson, five miles away in Somerville, promptly answered in the affirmative, and soon was heard a voice singing "America". ... Going to another instrument, connected by wire with Providence, forty-three miles distant, Mr. Bell listened a moment, and said, "Signor Brignolli, who is assisting at a concert in Providence Music Hall, will now sing for us." In a moment the cadence of the tenor's voice rose and fell, the sound being faint, sometimes lost, and then again audible. Later, a cornet solo played in Somerville was very distinctly heard. Still later, a three-part song came over the wire from Somerville, and Mr. Bell told his audience "I will switch off the song from one part of the room to another so that all can hear." At a subsequent lecture in Salem, Massachusetts, communication was established with Boston, eighteen miles distant, and Mr. Watson at the latter place sang "Auld Lang Syne", the National Anthem, and "Hail Columbia", while the audience at Salem joined in the chorus.Munro, John. Heroes of the Telegraph, London: The Religious tract society, 1891. Note: public domain text
On January 14, 1878, at Osborne House, on the Isle of Wight, Bell demonstrated the device to Queen Victoria, placing calls to Cowes, Southampton and London. These were the first publicly witnessed long-distance telephone calls in the UK. The queen considered the process to be "quite extraordinary" although the sound was "quite faint". She later asked to buy the equipment that was used, but Bell offered to make a model specifically for her.
When Gray applied for a patent for the variable resistance telephone transmitter, the Patent Office determined "while Gray was undoubtedly the first to conceive of and disclose the (Liquid rheostat) invention, as in his caveat of 14 February 1876, his failure to take any action amounting to completion until others had demonstrated the utility of the invention deprives him of the right to have it considered."Burton Baker, pp. 90–91
Thomas Alva Edison took the next step in improving the telephone with his invention in 1878 of the carbon grain "transmitter" (microphone) that provided a strong voice signal on the transmitting circuit that made long-distance calls practical. Edison discovered that carbon grains, squeezed between two metal plates, had a variable electrical resistance that was related to the pressure. Thus, the grains could vary their resistance as the plates moved in response to sound waves, and reproduce sound with good fidelity, without the weak signals associated with electromagnetic transmitters.
The carbon microphone was further improved by Emile Berliner, Francis Blake, David E. Hughes, Henry Hunnings, and Anthony White. The carbon microphone remained standard in telephony until the 1980s, and is still being produced.
The telephone exchange was an idea of the Hungary engineer Tivadar Puskás (1844–1893) in 1876, while he was working for Thomas Edison on a telegraph exchange.
Puskás Tivadar (1844–1893) (short biography), Hungarian History website. Retrieved from Archive.org, February 2013.
Champions of Meucci, Manzetti, and Gray have each offered fairly precise tales of a contrivance whereby Bell actively stole the invention of the telephone from their specific inventor. In the 2002 congressional resolution, it was inaccurately noted that Bell worked in a laboratory in which Meucci's materials had been stored, and claimed that Bell must thus have had access to those materials. Manzetti claimed that Bell visited him and examined his device in 1865. In 1886 it was publicly alleged by Zenas Wilber, a patent examiner, that Bell paid him one hundred dollars, when he allowed Bell to look at Gray's confidential patent filing. The Washington Post, May 22, 1886
One of the valuable claims in Bell's 1876 was claim 4, a method of producing variable electric current in a circuit by varying the resistance in the circuit. That feature was not shown in any of Bell's , but was shown in Elisha Gray's drawings in his Patent caveat filed the same day, February 14, 1876. A description of the variable resistance feature, consisting of seven sentences, was inserted into Bell's application. That it was inserted is not disputed. But when it was inserted is a controversial issue. Bell testified that he wrote the sentences containing the variable resistance feature before January 18, 1876, "almost at the last moment" before sending his draft application to his lawyers. A book by EvensonEvenson, pp. 64–69, 86–87, 110, 194–196 argues that the seven sentences and claim 4 were inserted, without Bell's knowledge, just before Bell's application was hand carried to the Patent Office by one of Bell's lawyers on February 14, 1876.
Contrary to the popular story, Gray's caveat was taken to the US Patent Office a few hours before Bell's application. Gray's caveat was taken to the Patent Office in the morning of February 14, 1876, shortly after the Patent Office opened and remained near the bottom of the in-basket until that afternoon. Bell's application was filed shortly before noon on February 14 by Bell's lawyer who requested that the filing fee be entered immediately onto the cash receipts blotter and Bell's application was taken to the Examiner immediately. Late in the afternoon, Gray's caveat was entered on the cash blotter and was not taken to the Examiner until the following day. The fact that Bell's filing fee was recorded earlier than Gray's led to the myth that Bell had arrived at the Patent Office earlier.Evenson, pp. 68–69 Bell was in Boston on February 14 and did not know this happened until later. Gray later abandoned his caveat and did not contest Bell's priority. That opened the door to Bell being granted US patent 174465 for the telephone on March 7, 1876.
Whitaker, A.J. Bell Telephone Memorial, City of Brantford/Hurley Printing, Brantford, Ontario, 1944.
Osborne, Harold S. (1943) Biographical Memoir of Alexander Graham Bell, National Academy of Sciences: Biographical Memoirs, Vol. XXIII, 1847–1922. Presented to the Academy at its 1943 annual meeting.
Walter Allward's design was the unanimous choice from among 10 submitted models, winning the competition. The memorial was originally to be completed by 1912 but Allward did not finish it until five years later. The Governor General of Canada, Victor Cavendish, 9th Duke of Devonshire, ceremoniously unveiled the memorial on October 24, 1917.Allward designed the monument to symbolize the telephone's ability to overcome distances. A series of steps lead to the main section where the floating allegorical figure of Inspiration appears over a reclining male figure representing Man, discovering his power to transmit sound through space, and also pointing to three floating figures, the messengers of Knowledge, Joy, and Sorrow positioned at the other end of the tableau. Additionally, there are two female figures mounted on granite pedestals representing Humanity positioned to the left and right of the memorial, one sending and the other receiving a message.
The Bell Telephone Memorial's grandeur has been described as the finest example of Allward's early work, propelling the sculptor to fame. The memorial itself has been used as a central fixture for many civic events and remains an important part of Brantford's history, helping the city style itself as 'The Telephone City'.
|
|